
Model Driven System Design Working Group:

FOUNDATIONAL CONCEPTS

FOR MODEL DRIVEN SYSTEM DESIGN

Loyd Baker, Paul Clemente, Bob Cohen,
Larry Permenter, Byron Purves, and Pete Salmon

Abstract. This paper presents an initial viewpoint
on an emerging technology: Model Driven System
Design (MDSD). In contrast, the current state of
practice has been characterized as document
centered. Practitioners of system design are well
aware of the technical and organizational difficulties
of implementing current approaches. By modeling
multiple aspects of a system throughout its life cycle,
this new view of system design offers dramatic gains
in productivity and product quality.

MISSION STATEMENT

To characterize model driven system design and
identify transition strategies from present document
driven approaches.

INTRODUCTION

Purpose. System engineers build models to better
understand problems, develop candidate solutions,
and validate their decisions. Different kinds of
models are built to help focus on the appropriate set
of questions that need answering in order to find the
most reliable and cost effective solutions and to
qualify the design against its requirements. The
following model types are commonly used:
• Schematic Model: A chart or diagram, having

an underlying machine readable representation,
which shows object relationships, structure, time
sequencing of actions (e.g., organizational chart,
spec tree, operational sequence diagram,
interface diagram, state diagram, PERT network
diagram, functional-flow block diagram).

• Performance Model: An executable structure
which represents system response to external
stimuli.

• Design Model: A machine interrogable version
of the system detailed design, usually
represented by CAD drawings, VHDL, C, etc.

• Physical model: Tangible physical equivalents
used for reality experimentation and
demonstration (e.g., DNA model or model
airplane in a wind tunnel.)

Motivation. Customers for large systems are
demanding reduced cycle time, lower development
cost, increased reliability and ISO compliance.
Achieving this requires a reduced error rate in
design through early detection, thereby reducing the
rework cost. As resources for developmental and
final product testing are diminishing, application of
models throughout the design process will become
mandatory. With less testing and increased quality
demands, an ongoing incremental approach to
Validation and Verification (V&V) is critical to
successful product design. This can be achieved
through the combined use of Integrated Product
Teams (IPT’s) and by generating models of
increasing fidelity that allow complete requirements
compliance assessment throughout the development
cycle. This overall process allows for an earlier
optimization of the design and an extension of
service life through retained design rationale and
executable models.

Definition. A model is a limited representation of a
system or process. The role of a model is to answer
questions about the entity it represents. Model types
may include: executable, information, design,
operations, process, enterprise and organization.
Models can be migrated into a cohesive
unambiguous representation of a system.
Verification and Validation activities interrogate the
system model, then progressively iterate on
adjustments to requirements and design until
completeness/ quality criteria are satisfied.

Requirements
Trade Studies &

Assessments

Functional
Trade Studies &

Assessments

Design
Trade Studies &

Assessments

Systems

Analysis

Requirements
Analysis

Requirements
Baseline

Validation

Functional
Analysis

Functional
Verification

Synthesis

Physical
Verification

Requirements Baseline

Validated Requirements Baseline

Functional Architecture

Verified Functional Architecture

Physical Architecture

Verified Physical Architecture

Requirement
Trade-offs & Impacts

Requirement &
Constraint
Conflicts

Decomposition/Allocation
trade-offs & Impacts

Decomposition &
Requirement Allocation

Alternatives

Design Solution
Trade-offs & Impacts

Design Solution
Requirements &

Alternatives

Control

PROCESS OUTPUTS

PROCESS INPUTS

Figure 1 System Engineering Process (per IEEE 1220)

MODEL DRIVEN SYSTEM DESIGN

Process Description. The model driven approach to
system design is fundamentally similar to those
generally used in the industry. (See for example,
Reference 1, IEEE 1220, Standard for Application
and Management of the System Engineering
Process). However, it prescribes some particular
means of achieving desired results. Figure 1 is a
summary of the system engineering process taken
from Figure 5 of Reference 1.

Validation, trade studies and assessments for a
Requirements Baseline, Functional Architecture, and
Physical Architecture make up a large part of the
identified activity. In the model driven approach
these activities are to be accomplished through
development of increasingly detailed models.

1
System
Definition

Preliminary
Design

Detailed
Design

2

3

4
Design
Qualification

Figure 2 Development Phases of a Project
MDSD is conveniently represented as a

basic subprocess which is repeated as many times as
necessary. Figure 2 shows the development phases
of a project. The System Definition phase
corresponds to the Requirements Analysis and
Requirements Baseline Validation activities of
Figure 1. The Preliminary Design phase corresponds
to the Functional Analysis and Functional

Verification activities. Detailed Design and Design
Qualification correspond to Synthesis and part of the
Physical Verification activities. Each of the main
blocks in Figure 2 is further broken down as shown
in Figure 3. These basic subprocesses apply to each
of the development phases of Figure 2, although

detailed content depends upon the actual phase.
Earlier phases emphasize requirements development;
later phases emphasize design drawings, source code
and test.

Make technology,
design decisions &
identify alternatives

Develop
Requirements

Formulate
models

Test articlesBuild test
articles

Analyse test
and existing
data

Validate models
against data
and analysis

Assess
compliance with
requirements

Figure 3. Subprocesses for MDSD

Some of the distinctive features of MDSD are
summarized below by development phase.

System Definition. The major events of this phase
are:
(a) Completion, in executable form, of system,
product and subsystem interface specifications,
system and product specifications, and preliminary
subsystem specifications.
(b) Establishment of a machine-readable system
baseline and a machine-readable preliminary
subsystem "design to" baseline.
(c) Completion of a system performance model in
sufficient detail to respond to all specifications in (a)
above.
(d) Execution of the system model to show that the
design-to baseline shows consistency of cost,
schedule and technical performance requirements.
(e) Completion of technical reviews appropriate to
the system definition stage, to include system model
validation.

The most important new concept in this stage is
that system requirements are integral to the system
model, and for MDSD to work, they must be in an
executable form. The role of performance oriented
modeling is to assess designability of the system
requirements and to make technology and
architecture decisions. Testing is oriented to

ensuring that models used to make these decisions
were sufficiently accurate. Customer interaction with
models is used to affirm that the right system is
being built.

Preliminary Design. The preliminary design phase
initiates subsystem design and creates subsystem-
level models, executable specifications and machine-
readable design-to baselines to guide component
development. Execution of the models against the
design-to baseline shows preliminary compliance
with specifications.

Detailed Design. The detailed design phase of the
system life cycle completes subsystem design and
models down to the lowest component and creates an
executable component specification, model, and
machine-readable build-to component baseline for
each component. Execution of the models shows
satisfactory preliminary compliance with
performance specifications and satisfactory final
compliance with design constraints.
By the completion of this stage all design decisions
have been made. Except for changes, design
freedoms have been exercised. The design is
represented in machine-readable form, so that the
detailed design (for example, a CAD model) can be
interrogated for compliance with design constraints.
These are limitations on the range of permitted

design solutions. They include such things as
dimensional limits, material selection and colors.
Performance models have been validated by
developmental tests and analyses, and execution of
these models shows that production articles built to
the detailed design will be compliant with the
specifications.

Design Qualification. During this phase,
performance models are validated against test data
taken on test articles manufactured in accordance
with the build-to baseline. Execution of the validated
performance models shows satisfactory compliance
with performance specifications.

Models are updated to respond to data collected
during integration and test. Models are validated and
approved for use in closing requirements. At
functional configuration audits, requirements are
checked for closure against results of model
execution. By the completion of this stage, the extent
of compliance of any specification requirement can
be discovered by interrogating the system model.

Information View. It is also helpful to view MDSD
from the kinds of information to be used and their
relationships. Figure 4 shows a basic information
model. The boxes represent kinds of information.
Annotated lines represent relationships. Arrows
show direction of the relationship, not direction of
flow of information. Bullets show a “many”
relationship.

Model

Executes

RepresentsSpecifies

Validates

Exercises

DesignCase

Requirement

Component

Figure 4. Information Model for Model Driven
System Design

The diagram can be summarized with the following
text:
• Requirements specify Components.
• Requirements may be decomposed into other

Requirements
• Components may be decomposed into other

Components
• Design Case validates Requirements

• Design Case exercises Components
• Models execute Design Alternates
• Models represent Components.

In the early stages one would like to examine
many Design Cases to discover the most suitable. By
the end of the Detailed Design phase, the project is
considering only one Design Case, the build-to
baseline. In early stages the models are low fidelity
and geared towards decision making; eventually
models become sufficiently faithful for compliance
assessment.

CONTRASTING MDSD WITH DOCUMENT
CENTERED SYSTEM DESIGN

Table 1 compares the anticipated benefits and
challenges of MDSD to those of a document-
centered approach. We base our assessments of the
model driven approach on extrapolations from
current experience with analytic modeling and
information modeling in less integrated and
extensive applications areas. The table, therefore,
assumes such projections against the ideal MDSD
environment. Our document centered assessments,
on the other hand, are more solidly grounded in
experience with current systems engineering
methods and an understanding of the inherent
limitations in using (a) natural language - especially
unstructured text - as the primary language of
discourse, and (b) document structure as the
organizing paradigm.

A close examination of the benefits and
challenges listed in the table reveals that modeling
issues and impacts are not limited to technical
characterization. Almost all of the items listed also
reflect organizational, accessibility/communications,
or infrastructure concerns. For example, the
distribution of design information requires more
than computing and networking hardware. Data
representation and control strategies affect and are
affected by, configuration management strategies,
storage requirements, and user requirements.
Similarly, usability requires a convenient paradigm
for navigating a design model, which in turn may
require that the modeling techniques support
dynamic adaptation of the user view and tools to a
user’s information needs.

In a model-driven system development environment,
factors that have generally been left to chance or
“organizational memory” in current approaches must
be addressed explicitly and in a manner that ensures
consistency of design, without unduly constraining
the developer’s design space or behavior. As this
need for explicit representation is met, our ability
will improve to explore, store, retrieve, and evaluate
designs easily and reliably throughout the
development process. Development of a model-
driven approach must therefore take into account the
interdependencies of “hard” (e.g., engineering,
mathematics, computability) and “soft” (e.g.,
organizational behavior, human-machine
interaction, training) areas.

Features
Model Driven
System Design

Document Centered
System Design

Information Repository Models Documents
Reviews (SDR, PDR, CDR) By interrogating models

(automated)
Read & interpret text then
compare

Verification (FCA-Functional
Configuration Audit)

Implicit, incremental,
automated, built into the
process

Human audit process

Communication Reproducible and
consistent

Answers may depend on
readers perspective

Validation Execute in different
contexts, (e.g. customer’s
context, on line)

Walk-throughs, reviews of
paper

Traceability --- Requirements to
design to verification

Integral Accuracy is labor intensive

Reuse Library, “Plug and Play” Boilerplate only
Cultural Adoption New Paradigm Status Quo
Infrastructure:

Workstation & Computers
Additional computing
resources

Less than model driven
approach

Tools Few Available Extensively available

Process Immature Processes Exist
but vary from company to
company

Training Immature Available
Navigation Potentially easy, since

relevant data is connected
Easy to browse individual
documents, but not design
rationale, correlation
between documents is
difficult

Table 1. Comparision of Model Driven and Document Driven Approaches to System Design

BENEFITS
Benefits of MDSD over textual approaches

accrue from two essential features of a good model:
• Expressiveness. This is the power to express
complex information in ways that are easily
understood. Models can achieve this expressive

power through physical representations, graphics,
animation, 3-D representations, and the use of color.
• Rigor. Compared with textual representations,
executable models provide clear and unambiguous
definitions of behavior, capability or design. This is
a consequence of the usual practice of building
hierarchical models from primitives that are both
rigorous and unambiguous.

These benefits require an investment by the
program community into understanding the
language of the model. This investment is not
currently required on text-based programs because
English language skills are normally available in all
employees. The MDSD approach on a program will
typically require one or two highly trained process
and tool experts who are well versed in the
methodology. These experts will then train and
mentor the program staff. Typically, a program
engineer can be productive with modeling
approaches after one half day of training by a process
expert.

It is useful to consider the benefits separately
from the perspectives of Customer and Supplier.

Customer Benefits. Customers benefit from better
overall cost, schedule and technical performance on
programs. This results primarily from improved
customer/supplier communications. Improved
communications have the following forms:
• More effective translation of user needs into

program requirements via the expressiveness
and rigor of models. This means that customers
are more likely to get what is needed, as opposed
to what is specified in textual documents, which
may be both voluminous and flawed.

• Improved visibility into program performance
because these results can be available
continuously throughout the program; they are
not just snapshots which are studied in formal
program reviews. There is also the potential for
results of executable models to be more
intuitively understandable.

• Early problem discovery leads to collaborative
solutions between customer and supplier. These
solutions can be incorporated much more
effectively as the program proceeds, rather than
during the crisis atmosphere of final system sell-
off.

• Issues and trades are visible to support decision
making.

• Greater supplier accountability results from
inherent progress visibility.

• Availability of validated models for qualified
components encourages reuse.

Supplier Benefits. Because of the expressiveness of
the models, intra-program communications can
improve dramatically. Using text-based processes
with IPTs can result in a great amount of time spent
reaching a common understanding of the design

between and among the different disciplines
comprising the IPT. If models are jointly developed
in a concurrent engineering environment and shared
across an electronic network, this communications
demand on design engineers can be greatly reduced.
For the greatest benefit, several modern concepts
may be integrated with the modeling process. These
include concurrent engineering, object oriented
design, and on-line communications between
program engineers.
Supplier benefits can be enumerated as follows:
• Hierarchical decomposition of models supports

visibility of information at its level of relevance.
The associated "de-cluttering" of design
information is extremely effective in enabling
engineers to "see" the critical issues at a
particular design level.

• More exhaustive search for optimal solutions is
possible.

• Rigor of the models helps to avoid ambiguities,
mistakes, and rework.

• Status of designs, processes and compliance is
visible and traceable as a direct result of the
model.

• Models provide linkage between hardware,
software, and other design elements. This is
important throughout the life cycle. It enables
system level interfacing errors to be identified
early and avoids surprises during the Design
Qualification phase.

• Reuse benefits are similar to those for the
customer.

Transition Considerations. Based on experience
gained from implementing system engineering
automation tools it is necessary to plan for their
introduction and use. Successful transition to MDSD
will require the following considerations:
• Adequate resources must be applied to

infrastructure and training.
• A well written system design process is

necessary for effective communication. It
should include:
- Description of interfaces between technical
disciplines
- Description of task completion criteria.

CONCLUSIONS AND RECOMMENDATIONS

Model driven system design offers a new rigor
in specifying and verifying systems. It supports
continuous assessment of consistency between
requirements and design. Customers are more likely

to receive the system they really need because of the
opportunity to experiment with requirements and
design options.

Model driven system design is a new way of
doing business. It requires a different mind set and a
different skill set from traditional approaches. This
new method is however, not yet fully defined. In fact
its definition is only just beginning. Readers of this
paper are invited to respond and participate in
developing this epoch making change to system
engineering.

INCOSE is in a unique position to set the
industry standard for this emerging approach to
system design. INCOSE should provide guidance
for infrastructure preparation, training, and standard
interfaces to requirements, models and designs.

REFERENCE

IEEE 1220, Standard for Application and
Management of the Systems Engineering
Process, 1995

